
view the aptitude questions

C Aptitude Questions and Answers

 ALL APTITUDE QUESTIONS AND INFORMATIONS

Predict the output or error(s) for the following:

1. struct aaa{
struct aaa *prev;
int i;
struct aaa *next;
};
main()
{
 struct aaa abc,def,ghi,jkl;
 int x=100;
 abc.i=0;abc.prev=&jkl;
 abc.next=&def;
 def.i=1;def.prev=&abc;def.next=&ghi;
 ghi.i=2;ghi.prev=&def;
 ghi.next=&jkl;
 jkl.i=3;jkl.prev=&ghi;jkl.next=&abc;
 x=abc.next->next->prev->next->i;
 printf("%d",x);
}

Answer:
2

Explanation:
above all statements form a double circular linked list;
abc.next->next->prev->next->i
this one points to "ghi" node the value of at particular node is 2.

2. struct point
 {
 int x;
 int y;
 };
struct point origin,*pp;
main()
{
pp=&origin;

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

printf("origin is(%d%d)\n",(*pp).x,(*pp).y);
printf("origin is (%d%d)\n",pp->x,pp->y);
}

Answer:
origin is(0,0)
origin is(0,0)

Explanation:
pp is a pointer to structure. we can access the elements of the structure either with arrow
mark or with indirection operator.
Note:
Since structure point is globally declared x & y are initialized as zeroes

3. main()
{
 int i=_l_abc(10);
 printf("%d\n",--i);
}
int _l_abc(int i)
{
 return(i++);
}

Answer:
9

Explanation:
return(i++) it will first return i and then increments. i.e. 10 will be returned.

4. main()
{
 char *p;
 int *q;
 long *r;
 p=q=r=0;
 p++;
 q++;
 r++;
 printf("%p...%p...%p",p,q,r);
}

Answer:
0001...0002...0004

Explanation:

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

++ operator when applied to pointers increments address according to their
corresponding data-types.

5. main()
{
 char c=' ',x,convert(z);
 getc(c);
 if((c>='a') && (c<='z'))
 x=convert(c);
 printf("%c",x);
}
convert(z)
{
 return z-32;
}

Answer:
Compiler error

Explanation:
declaration of convert and format of getc() are wrong.

6. main(int argc, char **argv)
{
 printf("enter the character");
 getchar();
 sum(argv[1],argv[2]);
}
sum(num1,num2)
int num1,num2;
{
 return num1+num2;
}

Answer:
Compiler error.

Explanation:
argv[1] & argv[2] are strings. They are passed to the function sum without converting it
to integer values.

7. # include
int one_d[]={1,2,3};
main()
{
 int *ptr;

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

 ptr=one_d;
 ptr+=3;
 printf("%d",*ptr);
}

Answer:
garbage value

Explanation:
ptr pointer is pointing to out of the array range of one_d.

Predict the output or error(s) for the following:
8. # include
aaa() {
 printf("hi");
 }
bbb(){
 printf("hello");
 }
ccc(){
 printf("TechPreparation.com");
 }
main()
{
 int (*ptr[3])();
 ptr[0]=aaa;
 ptr[1]=bbb;
 ptr[2]=ccc;
 ptr[2]();
}

Answer:
TechPreparation.com

Explanation:
ptr is array of pointers to functions of return type int.ptr[0] is assigned to address of the
function aaa. Similarly ptr[1] and ptr[2] for bbb and ccc respectively. ptr[2]() is in effect
of writing ccc(), since ptr[2] points to ccc.

9. #include
main()
{
FILE *ptr;
char i;

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

ptr=fopen("zzz.c","r");
while((i=fgetch(ptr))!=EOF)
printf("%c",i);
}

Answer:
contents of zzz.c followed by an infinite loop

Explanation:
The condition is checked against EOF, it should be checked against NULL.

10. main()
{
 int i =0;j=0;
 if(i && j++)
 printf("%d..%d",i++,j);
printf("%d..%d,i,j);
}

Answer:
0..0

Explanation:
The value of i is 0. Since this information is enough to determine the truth value of the
boolean expression. So the statement following the if statement is not executed. The
values of i and j remain unchanged and get printed.

11. main()
{
 int i;
 i = abc();
 printf("%d",i);
}
abc()
{
 _AX = 1000;
}

Answer:
1000

Explanation:
Normally the return value from the function is through the information from the
accumulator. Here _AH is the pseudo global variable denoting the accumulator. Hence,
the value of the accumulator is set 1000 so the function returns value 1000.

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

12. int i;
 main(){
int t;
for (t=4;scanf("%d",&i)-t;printf("%d\n",i))
 printf("%d--",t--);
 }
 // If the inputs are 0,1,2,3 find the o/p
Answer:
 4--0
 3--1
 2--2

Explanation:
Let us assume some x= scanf("%d",&i)-t the values during execution
 will be,
 t i x
 4 0 -4
 3 1 -2
 2 2 0

13. main(){
 int a= 0;int b = 20;char x =1;char y =10;
 if(a,b,x,y)
 printf("hello");
 }

Answer:
hello

Explanation:
The comma operator has associativity from left to right. Only the rightmost value is
returned and the other values are evaluated and ignored. Thus the value of last variable y
is returned to check in if. Since it is a non zero value if becomes true so, "hello" will be
printed.

14. main(){
 unsigned int i;
 for(i=1;i>-2;i--)
 printf("c aptitude");
}

Explanation:
i is an unsigned integer. It is compared with a signed value. Since the both types doesn't
match, signed is promoted to unsigned value. The unsigned equivalent of -2 is a huge
value so condition becomes false and control comes out of the loop.

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

15. In the following pgm add a stmt in the function fun such that the address of
'a' gets stored in 'j'.
main(){
 int * j;
 void fun(int **);
 fun(&j);
 }
 void fun(int **k) {
 int a =0;
 /* add a stmt here*/
 }

Answer:
 *k = &a

Explanation:
The argument of the function is a pointer to a pointer.

16. What are the following notations of defining functions known as?
i. int abc(int a,float b)
 {
 /* some code */
 }
ii. int abc(a,b)
 int a; float b;
 {
 /* some code*/
 }

Answer:
i. ANSI C notation
ii. Kernighan & Ritche notation

Predict the output or error(s) for the following:
16. main()
{
char *p;
p="%d\n";
 p++;
 p++;
 printf(p-2,300);
}

Answer:
300

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

Explanation:
The pointer points to % since it is incremented twice and again decremented by 2, it
points to '%d\n' and 300 is printed.

17. main(){
 char a[100];
 a[0]='a';a[1]]='b';a[2]='c';a[4]='d';
 abc(a);
}
abc(char a[]){
 a++;
 printf("%c",*a);
 a++;
 printf("%c",*a);
}

Explanation:
The base address is modified only in function and as a result a points to 'b' then after
incrementing to 'c' so bc will be printed.

18. func(a,b)
int a,b;
{
 return(a= (a==b));
}
main()
{
int process(),func();
printf("The value of process is %d !\n ",process(func,3,6));
}
process(pf,val1,val2)
int (*pf) ();
int val1,val2;
{
return((*pf) (val1,val2));
 }

Answer:
The value if process is 0 !

Explanation:
The function 'process' has 3 parameters - 1, a pointer to another function 2 and 3,
integers. When this function is invoked from main, the following substitutions for formal
parameters take place: func for pf, 3 for val1 and 6 for val2. This function returns the
result of the operation performed by the function 'func'. The function func has two integer

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

parameters. The formal parameters are substituted as 3 for a and 6 for b. since 3 is not
equal to 6, a==b returns 0. therefore the function returns 0 which in turn is returned by
the function 'process'.

19. void main()
{
 static int i=5;
 if(--i){
 main();
 printf("%d ",i);
 }
}

Answer:
 0 0 0 0

Explanation:
 The variable "I" is declared as static, hence memory for I will be allocated for
only once, as it encounters the statement. The function main() will be called recursively
unless I becomes equal to 0, and since main() is recursively called, so the value of static I
ie., 0 will be printed every time the control is returned.

20. void main()
{
 int k=ret(sizeof(float));
 printf("\n here value is %d",++k);
}
int ret(int ret)
{
 ret += 2.5;
 return(ret);
}

Answer:
Here value is 7

Explanation:
The int ret(int ret), ie., the function name and the argument name can be the same.
 Firstly, the function ret() is called in which the sizeof(float) ie., 4 is passed, after
the first expression the value in ret will be 6, as ret is integer hence the value stored in ret
will have implicit type conversion from float to int. The ret is returned in main() it is
printed after and preincrement.

21. void main()
{
 char a[]="12345\0";

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

 int i=strlen(a);
 printf("here in 3 %d\n",++i);
}

Answer:
here in 3 6

Explanation:
The char array 'a' will hold the initialized string, whose length will be counted from 0 till
the null character. Hence the 'I' will hold the value equal to 5, after the pre-increment in
the printf statement, the 6 will be printed.

22. void main()
{
 unsigned giveit=-1;
 int gotit;
 printf("%u ",++giveit);
 printf("%u \n",gotit=--giveit);
}

Answer:
 0 65535

23. void main()
{
 int i;
 char a[]="\0";
 if(printf("%s\n",a))
 printf("Ok here \n");
 else
 printf("Forget it\n");
}

Answer:
 Ok here

Explanation:
Printf will return how many characters does it print. Hence printing a null character
returns 1 which makes the if statement true, thus "Ok here" is printed.

Predict the output or error(s) for the following:
24. void main()
{
 void *v;
 int integer=2;
 int *i=&integer;

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

 v=i;
 printf("%d",(int*)*v);
}

Answer:
Compiler Error. We cannot apply indirection on type void*.

Explanation:
Void pointer is a generic pointer type. No pointer arithmetic can be done on it. Void
pointers are normally used for,
1. Passing generic pointers to functions and returning such pointers.
2. As a intermediate pointer type.
3. Used when the exact pointer type will be known at a later point of time.

25. void main()
{
 int i=i++,j=j++,k=k++;
printf(“%d%d%d”,i,j,k);
}

Answer:
Garbage values.

Explanation:
An identifier is available to use in program code from the point of its declaration.
So expressions such as i = i++ are valid statements. The i, j and k are automatic variables
and so they contain some garbage value. Garbage in is garbage out (GIGO).

26. void main()
{
 static int i=i++, j=j++, k=k++;
printf(“i = %d j = %d k = %d”, i, j, k);
}

Answer:
i = 1 j = 1 k = 1

Explanation:
Since static variables are initialized to zero by default.

27. void main()
{
 while(1){
 if(printf("%d",printf("%d")))
 break;
 else

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

 continue;
 }
}

Answer:
Garbage values

Explanation:
The inner printf executes first to print some garbage value. The printf returns no of
characters printed and this value also cannot be predicted. Still the outer printf prints
something and so returns a non-zero value. So it encounters the break statement and
comes out of the while statement.

28. main()
{
 unsigned int i=10;
 while(i-->=0)
 printf("%u ",i);

}

Answer:
10 9 8 7 6 5 4 3 2 1 0 65535 65534…..

Explanation:
Since i is an unsigned integer it can never become negative. So the expression i-- >=0
will always be true, leading to an infinite loop.

29. #include
main()
{
 int x,y=2,z,a;
 if(x=y%2) z=2;
 a=2;
 printf("%d %d ",z,x);
}

 Answer:
Garbage-value 0

Explanation:
The value of y%2 is 0. This value is assigned to x. The condition reduces to if (x) or in
other words if(0) and so z goes uninitialized.
Thumb Rule: Check all control paths to write bug free code.

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

30. main()
{
 int a[10];
 printf("%d",*a+1-*a+3);
}

Answer:
4

Explanation:
 *a and -*a cancels out. The result is as simple as 1 + 3 = 4 !

31. #define prod(a,b) a*b
main()
{
 int x=3,y=4;
 printf("%d",prod(x+2,y-1));
}

Answer:
10

Explanation:
 The macro expands and evaluates to as:
 x+2*y-1 => x+(2*y)-1 => 10

32. main()
{
 unsigned int i=65000;
 while(i++!=0);
 printf("%d",i);
}

Answer:
 1

Explanation:
Note the semicolon after the while statement. When the value of i becomes 0 it comes out
of while loop. Due to post-increment on i the value of i while printing is 1.

Predict the output or error(s) for the following:
33. main()
{
 int i=0;
 while(+(+i--)!=0)
 i-=i++;

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

 printf("%d",i);
}

Answer:
-1

Explanation:
Unary + is the only dummy operator in C. So it has no effect on the expression and now
the while loop is, while(i--!=0) which is false and so breaks out of while loop. The
value –1 is printed due to the post-decrement operator.

34. main()
{
 float f=5,g=10;
 enum{i=10,j=20,k=50};
 printf("%d\n",++k);
 printf("%f\n",f<<2);
 printf("%lf\n",f%g);
 printf("%lf\n",fmod(f,g));
}

Answer:
Line no 5: Error: Lvalue required
Line no 6: Cannot apply leftshift to float
Line no 7: Cannot apply mod to float

Explanation:
 Enumeration constants cannot be modified, so you cannot apply ++.
 Bit-wise operators and % operators cannot be applied on float values.
 fmod() is to find the modulus values for floats as % operator is for ints.

35. main()
{
 int i=10;
 void pascal f(int,int,int);
f(i++,i++,i++);
 printf(" %d",i);
}
void pascal f(integer :i,integer:j,integer :k)
{
write(i,j,k);
}

Answer:
Compiler error: unknown type integer
Compiler error: undeclared function write

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

Explanation:
Pascal keyword doesn’t mean that pascal code can be used. It means that the function
follows Pascal argument passing mechanism in calling the functions.

36. void pascal f(int i,int j,int k)
{
printf(“%d %d %d”,i, j, k);
}
void cdecl f(int i,int j,int k)
{
printf(“%d %d %d”,i, j, k);
}
main()
{
 int i=10;
f(i++,i++,i++);
 printf(" %d\n",i);
i=10;
f(i++,i++,i++);
printf(" %d",i);
}

Answer:
10 11 12 13
12 11 10 13

Explanation:
Pascal argument passing mechanism forces the arguments to be called from left to right.
cdecl is the normal C argument passing mechanism where the arguments are passed from
right to left.

37. What is the output of the program given below

main()
 {
 signed char i=0;
 for(;i>=0;i++) ;
 printf("%d\n",i);
 }

Answer
 -128

Explanation
Notice the semicolon at the end of the for loop. THe initial value of the i is set to 0. The

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

inner loop executes to increment the value from 0 to 127 (the positive range of char) and
then it rotates to the negative value of -128. The condition in the for loop fails and so
comes out of the for loop. It prints the current value of i that is -128.

38. main()
 {
 unsigned char i=0;
 for(;i>=0;i++) ;
 printf("%d\n",i);
 }

Answer
 infinite loop

Explanation
The difference between the previous question and this one is that the char is declared to
be unsigned. So the i++ can never yield negative value and i>=0 never becomes false so
that it can come out of the for loop.

39. main()
 {
 char i=0;
 for(;i>=0;i++) ;
 printf("%d\n",i);

 }

Answer:
 Behavior is implementation dependent.

Explanation:
The detail if the char is signed/unsigned by default is implementation dependent. If the
implementation treats the char to be signed by default the program will print –128 and
terminate. On the other hand if it considers char to be unsigned by default, it goes to
infinite loop.
Rule:
You can write programs that have implementation dependent behavior. But dont write
programs that depend on such behavior.

40. Is the following statement a declaration/definition. Find what does it mean?
int (*x)[10];

Answer
 Definition.
 x is a pointer to array of(size 10) integers.

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

 Apply clock-wise rule to find the meaning of this definition.

41. What is the output for the program given below

 typedef enum errorType{warning, error, exception,}error;
 main()
 {
 error g1;
 g1=1;
 printf("%d",g1);
 }

Answer
 Compiler error: Multiple declaration for error

Explanation
The name error is used in the two meanings. One means that it is a enumerator constant
with value 1. The another use is that it is a type name (due to typedef) for enum
errorType. Given a situation the compiler cannot distinguish the meaning of error to
know in what sense the error is used:
 error g1;
g1=error;
 // which error it refers in each case?
When the compiler can distinguish between usages then it will not issue error (in pure
technical terms, names can only be overloaded in different namespaces).
Note: the extra comma in the declaration,
enum errorType{warning, error, exception,}
is not an error. An extra comma is valid and is provided just for programmer’s
convenience.

42. typedef struct error{int warning, error, exception;}error;
 main()
 {
 error g1;
 g1.error =1;
 printf("%d",g1.error);
 }

Answer
 1

Explanation
The three usages of name errors can be distinguishable by the compiler at any instance,
so valid (they are in different namespaces).
Typedef struct error{int warning, error, exception;}error;

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

This error can be used only by preceding the error by struct kayword as in:
struct error someError;
typedef struct error{int warning, error, exception;}error;
This can be used only after . (dot) or -> (arrow) operator preceded by the variable

name as in :
g1.error =1;
 printf("%d",g1.error);
 typedef struct error{int warning, error, exception;}error;
This can be used to define variables without using the preceding struct keyword as in:
error g1;
Since the compiler can perfectly distinguish between these three usages, it is perfectly
legal and valid.

Note
This code is given here to just explain the concept behind. In real programming don’t use
such overloading of names. It reduces the readability of the code. Possible doesn’t mean
that we should use it!

Predict the output or error(s) for the following:
43. #ifdef something
int some=0;
#endif

main()
{
int thing = 0;
printf("%d %d\n", some ,thing);
}

Answer:
Compiler error : undefined symbol some

Explanation:
This is a very simple example for conditional compilation. The name something is not
already known to the compiler making the declaration
int some = 0;
effectively removed from the source code.

44. #if something == 0
int some=0;
#endif

main()
{
int thing = 0;

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

printf("%d %d\n", some ,thing);
}

Answer
0 0

Explanation
This code is to show that preprocessor expressions are not the same as the ordinary
expressions. If a name is not known the preprocessor treats it to be equal to zero.

45. What is the output for the following program

 main()
 {
 int arr2D[3][3];
 printf("%d\n", ((arr2D==* arr2D)&&(* arr2D == arr2D[0])));
 }
Answer
1

46. void main()
 {
if(~0 == (unsigned int)-1)
printf(“You can answer this if you know how values are represented in memory”);
 }

 Answer
You can answer this if you know how values are represented in memory

Explanation
~ (tilde operator or bit-wise negation operator) operates on 0 to produce all ones to fill the
space for an integer. –1 is represented in unsigned value as all 1’s and so both are equal.

47. int swap(int *a,int *b)
{
 *a=*a+*b;*b=*a-*b;*a=*a-*b;
}
main()
{
 int x=10,y=20;
 swap(&x,&y);
 printf("x= %d y = %d\n",x,y);
}

Answer
 x = 20 y = 10

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

Explanation
This is one way of swapping two values. Simple checking will help understand this.

48. main()
{
char *p = “ayqm”;
printf(“%c”,++*(p++));
}

Answer:
b

49. main()
 {
 int i=5;
 printf("%d",++i++);
}

Answer:
Compiler error: Lvalue required in function main
Explanation:
 ++i yields an rvalue. For postfix ++ to operate an lvalue is required.

50. main()
{
char *p = “ayqm”;
char c;
c = ++*p++;
printf(“%c”,c);
}

Answer:
b

Explanation:
There is no difference between the expression ++*(p++) and ++*p++. Parenthesis just
works as a visual clue for the reader to see which expression is first evaluated.

51.
int aaa() {printf(“Hi”);}
int bbb(){printf(“hello”);}
iny ccc(){printf(“bye”);}

main()
{

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

int (* ptr[3]) ();
ptr[0] = aaa;
ptr[1] = bbb;
ptr[2] =ccc;
ptr[2]();
}

Answer:
 bye

Explanation:
int (* ptr[3])() says that ptr is an array of pointers to functions that takes no arguments
and returns the type int. By the assignment ptr[0] = aaa; it means that the first function
pointer in the array is initialized with the address of the function aaa. Similarly, the other
two array elements also get initialized with the addresses of

the functions bbb and ccc. Since ptr[2] contains the address of the function ccc, the call to
the function ptr[2]() is same as calling ccc(). So it results in printing "bye".

52.
main()
{
int i=5;
printf(“%d”,i=++i ==6);
}

Answer:
1

Explanation:
The expression can be treated as i = (++i==6), because == is of higher precedence than =
operator. In the inner expression, ++i is equal to 6 yielding true(1). Hence the result.

Predict the output or error(s) for the following:
53. main()
{
 char p[]="%d\n";
p[1] = 'c';
printf(p,65);
}

Answer:
A

Explanation:

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

Due to the assignment p[1] = ‘c’ the string becomes, “%c\n”. Since this string becomes
the format string for printf and ASCII value of 65 is ‘A’, the same gets printed.

54. void (* abc(int, void (*def) ())) ();

Answer::
 abc is a ptr to a function which takes 2 parameters .(a). an integer variable.(b). a
ptrto a funtion which returns void. the return type of the function is void.
Explanation:
 Apply the clock-wise rule to find the result.

55. main()
{
while (strcmp(“some”,”some\0”))
printf(“Strings are not equal\n”);
 }

Answer:
No output

Explanation:
Ending the string constant with \0 explicitly makes no difference. So “some” and
“some\0” are equivalent. So, strcmp returns 0 (false) hence breaking out of the while
loop.

56. main()
{
char str1[] = {‘s’,’o’,’m’,’e’};
char str2[] = {‘s’,’o’,’m’,’e’,’\0’};
while (strcmp(str1,str2))
printf(“Strings are not equal\n”);
}

Answer:
“Strings are not equal”
“Strings are not equal”
….

Explanation:
If a string constant is initialized explicitly with characters, ‘\0’ is not appended
automatically to the string. Since str1 doesn’t have null termination, it treats whatever the
values that are in the following positions as part of the string until it randomly reaches a
‘\0’. So str1 and str2 are not the same, hence the result.

57. main()
{

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

int i = 3;
for (;i++=0;) printf(“%d”,i);
}

Answer:
Compiler Error: Lvalue required.

Explanation:
As we know that increment operators return rvalues and hence it cannot appear on the
left hand side of an assignment operation.

58. void main()
{
int *mptr, *cptr;
mptr = (int*)malloc(sizeof(int));
printf(“%d”,*mptr);
int *cptr = (int*)calloc(sizeof(int),1);
printf(“%d”,*cptr);
}

Answer:
garbage-value 0

Explanation:
The memory space allocated by malloc is uninitialized, whereas calloc returns the
allocated memory space initialized to zeros.

59. void main()
{
static int i;
while(i<=10)
(i>2)?i++:i--;
 printf(“%d”, i);
}

Answer:
32767

Explanation:
Since i is static it is initialized to 0. Inside the while loop the conditional operator
evaluates to false, executing i--. This continues till the integer value rotates to positive
value (32767). The while condition becomes false and hence, comes out of the while
loop, printing the i value.

60. main()
{

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

 int i=10,j=20;
 j = i, j?(i,j)?i:j:j;
 printf("%d %d",i,j);
}

Answer:
10 10

Explanation:
 The Ternary operator (? :) is equivalent for if-then-else statement. So the
question can be written as:
 if(i,j)
 {
if(i,j)
 j = i;
 else
 j = j;
 }
 else
 j = j;

61. 1. const char *a;
2. char* const a;
3. char const *a;
-Differentiate the above declarations.

Answer:
1. 'const' applies to char * rather than 'a' (pointer to a constant char)
 *a='F' : illegal
 a="Hi" : legal

2. 'const' applies to 'a' rather than to the value of a (constant pointer to char)
 *a='F' : legal
 a="Hi" : illegal

3. Same as 1.

62. main()
{
 int i=5,j=10;
 i=i&=j&&10;
 printf("%d %d",i,j);
}

Answer:

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

1 10

Explanation:
The expression can be written as i=(i&=(j&&10)); The inner expression (j&&10)
evaluates to 1 because j==10. i is 5. i = 5&1 is 1. Hence the result.

Predict the output or error(s) for the following:
63. main()
{
 int i=4,j=7;
 j = j || i++ && printf("YOU CAN");
 printf("%d %d", i, j);
}

Answer:
4 1

Explanation:
The boolean expression needs to be evaluated only till the truth value of the expression is
not known. j is not equal to zero itself means that the expression’s truth value is 1.
Because it is followed by || and true || (anything) => true where (anything) will not be
evaluated. So the remaining expression is not evaluated and so the value of i remains the
same.
Similarly when && operator is involved in an expression, when any of the operands
become false, the whole expression’s truth value becomes false and hence the remaining
expression will not be evaluated.
 false && (anything) => false where (anything) will not be evaluated.

64. main()
{
 register int a=2;
 printf("Address of a = %d",&a);
 printf("Value of a = %d",a);
}

Answer:
Compier Error: '&' on register variable
Rule to Remember:
 & (address of) operator cannot be applied on register variables.

65. main()
{
 float i=1.5;
 switch(i)
 {
 case 1: printf("1");

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

 case 2: printf("2");
 default : printf("0");
 }
}

Answer:
Compiler Error: switch expression not integral

Explanation:
Switch statements can be applied only to integral types.

66. main()
{
 extern i;
 printf("%d\n",i);
 {
 int i=20;
 printf("%d\n",i);
 }
}

Answer:
Linker Error : Unresolved external symbol i

Explanation:
The identifier i is available in the inner block and so using extern has no use in resolving
it.

67. main()
{
 int a=2,*f1,*f2;
 f1=f2=&a;
 *f2+=*f2+=a+=2.5;
 printf("\n%d %d %d",a,*f1,*f2);
}

Answer:
16 16 16

Explanation:
f1 and f2 both refer to the same memory location a. So changes through f1 and f2
ultimately affects only the value of a.

68. main()
{
 char *p="GOOD";

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

 char a[]="GOOD";
printf("\n sizeof(p) = %d, sizeof(*p) = %d, strlen(p) = %d", sizeof(p), sizeof(*p),
strlen(p));
 printf("\n sizeof(a) = %d, strlen(a) = %d", sizeof(a), strlen(a));
}

Answer:
 sizeof(p) = 2, sizeof(*p) = 1, strlen(p) = 4
 sizeof(a) = 5, strlen(a) = 4

Explanation:
 sizeof(p) => sizeof(char*) => 2
 sizeof(*p) => sizeof(char) => 1
 Similarly,
 sizeof(a) => size of the character array => 5
When sizeof operator is applied to an array it returns the sizeof the array and it is not the
same as the sizeof the pointer variable. Here the sizeof(a) where a is the character array
and the size of the array is 5 because the space necessary for the terminating NULL
character should also be taken into account.

69. #define DIM(array, type) sizeof(array)/sizeof(type)
main()
{
int arr[10];
printf(“The dimension of the array is %d”, DIM(arr, int));
}

Answer:
10

Explanation:
The size of integer array of 10 elements is 10 * sizeof(int). The macro expands to
sizeof(arr)/sizeof(int) => 10 * sizeof(int) / sizeof(int) => 10.

70. int DIM(int array[])
{
return sizeof(array)/sizeof(int);
}
main()
{
int arr[10];
printf(“The dimension of the array is %d”, DIM(arr));
}

Answer:
1

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

Explanation:
Arrays cannot be passed to functions as arguments and only the pointers can be passed.
So the argument is equivalent to int * array (this is one of the very few places where []
and * usage are equivalent). The return statement becomes, sizeof(int *)/ sizeof(int) that
happens to be equal in this case.

71. main()
{
 static int a[3][3]={1,2,3,4,5,6,7,8,9};
 int i,j;
 static *p[]={a,a+1,a+2};
 for(i=0;i<3;i++)
 {
 for(j=0;j<3;j++)

 printf("%d\t%d\t%d\t%d\n",*(*(p+i)+j),
 ((j+p)+i),*(*(i+p)+j),*(*(p+j)+i));
 }
}

Answer:
 1 1 1 1
 2 4 2 4
 3 7 3 7
 4 2 4 2
 5 5 5 5
 6 8 6 8
 7 3 7 3
 8 6 8 6
 9 9 9 9
Explanation:
 ((p+i)+j) is equivalent to p[i][j].

Predict the output or error(s) for the following:
72. main()
{
 void swap();
 int x=10,y=8;
 swap(&x,&y);
 printf("x=%d y=%d",x,y);
}
void swap(int *a, int *b)
{
 *a ^= *b, *b ^= *a, *a ^= *b;

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

}

Answer:
x=10 y=8

Explanation:
Using ^ like this is a way to swap two variables without using a temporary variable and
that too in a single statement.
Inside main(), void swap(); means that swap is a function that may take any number of
arguments (not no arguments) and returns nothing. So this doesn’t issue a compiler error
by the call swap(&x,&y); that has two arguments.
This convention is historically due to pre-ANSI style (referred to as Kernighan and
Ritchie style) style of function declaration. In that style, the swap function will be defined
as follows,
void swap()

int *a, int *b
{
 *a ^= *b, *b ^= *a, *a ^= *b;
}
where the arguments follow the (). So naturally the declaration for swap will look like,
void swap() which means the swap can take any number of arguments.

73. main()
{
 int i = 257;
 int *iPtr = &i;
 printf("%d %d", *((char*)iPtr), *((char*)iPtr+1));
}

Answer:
 1 1

Explanation:
The integer value 257 is stored in the memory as, 00000001 00000001, so the individual
bytes are taken by casting it to char * and get printed.

74. main()
{
 int i = 258;
 int *iPtr = &i;
 printf("%d %d", *((char*)iPtr), *((char*)iPtr+1));
}

Answer:
 2 1

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

Explanation:
The integer value 257 can be represented in binary as, 00000001 00000001. Remember
that the INTEL machines are ‘small-endian’ machines. Small-endian means that the
lower order bytes are stored in the higher memory addresses and the higher order bytes
are stored in lower addresses. The integer value 258 is stored in memory as: 00000001
00000010.

75. main()
{
 int i=300;
 char *ptr = &i;
 *++ptr=2;
 printf("%d",i);
}

Answer:
556

Explanation:
The integer value 300 in binary notation is: 00000001 00101100. It is stored in memory
(small-endian) as: 00101100 00000001. Result of the expression *++ptr = 2 makes the
memory representation as: 00101100 00000010. So the integer corresponding to it is
00000010 00101100 => 556.

76. #include
main()
{
char * str = "hello";
char * ptr = str;
char least = 127;
while (*ptr++)
 least = (*ptr
printf("%d",least);
}

Answer:
0

Explanation:
After ‘ptr’ reaches the end of the string the value pointed by ‘str’ is ‘\0’. So the value of
‘str’ is less than that of ‘least’. So the value of ‘least’ finally is 0.

77. Declare an array of N pointers to functions returning pointers to functions
returning pointers to characters?

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

Answer:
 (char*(*)()) (*ptr[N])();

78. main()
{
struct student
{
char name[30];
struct date dob;
}stud;
struct date
 {
 int day,month,year;
 };
 scanf("%s%d%d%d", stud.rollno, &student.dob.day, &student.dob.month,
&student.dob.year);
}

Answer:
Compiler Error: Undefined structure date

Explanation:
Inside the struct definition of ‘student’ the member of type struct date is given. The
compiler doesn’t have the definition of date structure (forward reference is not allowed
in C in this case) so it issues an error.

79. main()
{
struct date;
struct student
{
char name[30];
struct date dob;
}stud;
struct date
 {
 int day,month,year;
 };
scanf("%s%d%d%d", stud.rollno, &student.dob.day, &student.dob.month,
&student.dob.year);
}

Answer:
Compiler Error: Undefined structure date

Explanation:

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

Only declaration of struct date is available inside the structure definition of ‘student’ but
to have a variable of type struct date the definition of the structure is required.

80. There were 10 records stored in “somefile.dat” but the following program
printed 11 names. What went wrong?
void main()
{

struct student
{
char name[30], rollno[6];
}stud;
FILE *fp = fopen(“somefile.dat”,”r”);
while(!feof(fp))
 {
 fread(&stud, sizeof(stud), 1 , fp);
puts(stud.name);
}
}

Explanation:
fread reads 10 records and prints the names successfully. It will return EOF only when
fread tries to read another record and fails reading EOF (and returning EOF). So it prints
the last record again. After this only the condition feof(fp) becomes false, hence comes
out of the while loop.

Predict the output or error(s) for the following:
81. Is there any difference between the two declarations,
1. int foo(int *arr[]) and
2. int foo(int *arr[2])

Answer:
No

Explanation:
Functions can only pass pointers and not arrays. The numbers that are allowed inside the
[] is just for more readability. So there is no difference between the two declarations.

82. What is the subtle error in the following code segment?
void fun(int n, int arr[])
{
int *p=0;
int i=0;
while(i++
 p = &arr[i];
*p = 0;

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

}

Answer & Explanation:
If the body of the loop never executes p is assigned no address. So p remains NULL
where *p =0 may result in problem (may rise to runtime error “NULL pointer
assignment” and terminate the program).

83. What is wrong with the following code?
int *foo()
{
int *s = malloc(sizeof(int)100);
assert(s != NULL);
return s;
}

Answer & Explanation:
assert macro should be used for debugging and finding out bugs. The check s != NULL is
for error/exception handling and for that assert shouldn’t be used. A plain if and the
corresponding remedy statement has to be given.

84. What is the hidden bug with the following statement?
assert(val++ != 0);

Answer & Explanation:
Assert macro is used for debugging and removed in release version. In assert, the
experssion involves side-effects. So the behavior of the code becomes different in case of
debug version and the release version thus leading to a subtle bug.
Rule to Remember:
Don’t use expressions that have side-effects in assert statements.

85. void main()
{
int *i = 0x400; // i points to the address 400
*i = 0; // set the value of memory location pointed by i;
}

Answer:
Undefined behavior

Explanation:
The second statement results in undefined behavior because it points to some location
whose value may not be available for modification. This type of pointer in which the
non-availability of the implementation of the referenced location is known as 'incomplete
type'.

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

86. #define assert(cond) if(!(cond)) \
 (fprintf(stderr, "assertion failed: %s, file %s, line %d \n",#cond,\
 __FILE__,__LINE__), abort())

void main()
{
int i = 10;
if(i==0)
 assert(i < 100);
else
 printf("This statement becomes else for if in assert macro");
}

Answer:
No output

Explanation:
The else part in which the printf is there becomes the else for if in the assert macro.
Hence nothing is printed.
The solution is to use conditional operator instead of if statement,
#define assert(cond) ((cond)?(0): (fprintf (stderr, "assertion failed: \ %s, file %s, line
%d \n",#cond, __FILE__,__LINE__), abort()))

Note:
However this problem of “matching with nearest else” cannot be solved by the usual
method of placing the if statement inside a block like this,
#define assert(cond) { \
if(!(cond)) \
 (fprintf(stderr, "assertion failed: %s, file %s, line %d \n",#cond,\
 __FILE__,__LINE__), abort()) \
}

87. Is the following code legal?
struct a
 {
int x;
 struct a b;
 }

Answer:
No

Explanation:
Is it not legal for a structure to contain a member that is of the same
type as in this case. Because this will cause the structure declaration to be recursive
without end.

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

88. Is the following code legal?
struct a
 {
int x;
 struct a *b;
 }

Answer:
Yes.

Explanation:
*b is a pointer to type struct a and so is legal. The compiler knows, the size of the pointer
to a structure even before the size of the structure
is determined(as you know the pointer to any type is of same size). This type of structures
is known as ‘self-referencing’ structure.

Predict the output or error(s) for the following:
89. Is the following code legal?
typedef struct a
 {
int x;
 aType *b;
 }aType

Answer:
No

Explanation:
The typename aType is not known at the point of declaring the structure (forward
references are not made for typedefs).

90. Is the following code legal?
typedef struct a aType;
struct a
{
int x;
aType *b;
};

Answer:
Yes

Explanation:
The typename aType is known at the point of declaring the structure, because it is already
typedefined.

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

91. Is the following code legal?
void main()
{
typedef struct a aType;
aType someVariable;
struct a
{
int x;
 aType *b;
 };
}

Answer:
No

Explanation:
 When the declaration,
typedef struct a aType;
is encountered body of struct a is not known. This is known as ‘incomplete types’.

92. void main()
{
printf(“sizeof (void *) = %d \n“, sizeof(void *));
 printf(“sizeof (int *) = %d \n”, sizeof(int *));
 printf(“sizeof (double *) = %d \n”, sizeof(double *));
 printf(“sizeof(struct unknown *) = %d \n”, sizeof(struct unknown *));
 }

Answer :
sizeof (void *) = 2
sizeof (int *) = 2
sizeof (double *) = 2
sizeof(struct unknown *) = 2

Explanation:
The pointer to any type is of same size.

93. char inputString[100] = {0};
To get string input from the keyboard which one of the following is better?
 1) gets(inputString)
 2) fgets(inputString, sizeof(inputString), fp)

Answer & Explanation:
The second one is better because gets(inputString) doesn't know the size of the string
passed and so, if a very big input (here, more than 100 chars) the charactes will be written

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

past the input string. When fgets is used with stdin performs the same operation as gets
but is safe.

94. Which version do you prefer of the following two,
1) printf(“%s”,str); // or the more curt one
2) printf(str);

Answer & Explanation:
Prefer the first one. If the str contains any format characters like %d then it will result in
a subtle bug.

95. void main()
{
int i=10, j=2;
int *ip= &i, *jp = &j;
int k = *ip/*jp;
printf(“%d”,k);
}

Answer:
Compiler Error: “Unexpected end of file in comment started in line 5”.

Explanation:
The programmer intended to divide two integers, but by the “maximum munch” rule, the
compiler treats the operator sequence / and * as /* which happens to be the starting of
comment. To force what is intended by the programmer,
int k = *ip/ *jp;
// give space explicity separating / and *
//or
int k = *ip/(*jp);
// put braces to force the intention
will solve the problem.

96. void main()
{
char ch;
for(ch=0;ch<=127;ch++)
printf(“%c %d \n“, ch, ch);
}

Answer:
Implemention dependent

Explanation:
The char type may be signed or unsigned by default. If it is signed then ch++ is executed
after ch reaches 127 and rotates back to -128. Thus ch is always smaller than 127.

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

97. Is this code legal?
int *ptr;
ptr = (int *) 0x400;

Answer:
 Yes

Explanation:
The pointer ptr will point at the integer in the memory location 0x400.

98. main()
{
char a[4]="HELLO";
printf("%s",a);
}

Answer:
Compiler error: Too many initializers

Explanation:
The array a is of size 4 but the string constant requires 6 bytes to get stored.

99. main()
{
char a[4]="HELL";
printf("%s",a);
}

Answer:
 HELL%@!~@!@???@~~!

Explanation:
The character array has the memory just enough to hold the string “HELL” and doesnt
have enough space to store the terminating null character. So it prints the HELL correctly
and continues to print garbage values till it accidentally comes across a NULL
character.

Predict the output or error(s) for the following:
100. main()
{
 int a=10,*j;
 void *k;
 j=k=&a;
 j++;
 k++;
 printf("\n %u %u ",j,k);

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

}

Answer:
Compiler error: Cannot increment a void pointer

Explanation:
Void pointers are generic pointers and they can be used only when the type is not known
and as an intermediate address storage type. No pointer arithmetic can be done on it and
you cannot apply indirection operator (*) on void pointers.

101. Printf can be implemented by using __________ list.

Answer:
Variable length argument lists

102. char *someFun()
 {
 char *temp = “string constant";
 return temp;
 }
 int main()
 {
 puts(someFun());
 }

Answer:
string constant

Explanation:
 The program suffers no problem and gives the output correctly because the
character constants are stored in code/data area and not allocated in stack, so this doesn’t
lead to dangling pointers.

103. char *someFun1()
 {
 char temp[] = “string";
 return temp;
 }
 char *someFun2()
 {
 char temp[] = {‘s’, ‘t’,’r’,’i’,’n’,’g’};
 return temp;
 }
 int main()
 {
 puts(someFun1());

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

view the aptitude questions

 puts(someFun2());
 }

Answer:
Garbage values.

Explanation:
 Both the functions suffer from the problem of dangling pointers. In someFun1()
temp is a character array and so the space for it is allocated in heap and is initialized with
character string “string”. This is created dynamically as the function is called, so is also
deleted dynamically on exiting the function so the string data is not available in the
calling function main() leading to print some garbage values. The function someFun2()
also suffers from the same problem but the problem can be easily identified in this case.

104. There were 10 records stored in “somefile.dat” but the following program
printed 11 names. What went wrong?
void main()

{
struct student
{
char name[30], rollno[6];
}stud;
FILE *fp = fopen(“somefile.dat”,”r”);
while(!feof(fp))
 {
 fread(&stud, sizeof(stud), 1 , fp);
puts(stud.name);
}
}

Explanation:
fread reads 10 records and prints the names successfully. It will return EOF only when
fread tries to read another record and fails reading EOF (and returning EOF). So it prints
the last record again. After this only the condition feof(fp) becomes false, hence comes
out of the while loop.

Source for aptitude questions

http://www.cleverinfo.do.am/
http://www.cleverinfo.do.am/

	C Aptitude Questions and Answers

